计划总结网 > 考试 > 学历类考试 > 高考频道 > 高考科目 > 高考数学 >

高考数学题海战术见解

时间: 德豪2 高考数学

  高考数学第一轮复习已经开始,下面是学习啦小编为你整理关于高考数学题海战术见解的内容,希望大家喜欢!

  高考数学题海战术见解:四大误区

  误区1:用在学习上的时间越多成绩越好

  这是最大误区,保证学习时间并不能保证成绩。不在于学了多少时间,而在于学会了多少。不少高三学子“挑灯夜战”,经常熬到凌晨,此时大脑已经很疲劳,效率可想而知。懂得劳逸结合、适时休息和锻炼的人,是高三学子中的智者,也是能否走出题海的标志。

  误区2:课堂上听明白了就认为自己会了

  老师讲过的题目,考试时类似,可条件变一变,很多人就又不会了。就像高考题,学生会觉得似曾相识,但不一定能考高分。问题就在于“听明白了”是老师的讲授,学生听课时被动地接受,没有经过自己积极主动的思考。因此,只知其然不知其所以然,貌似听明白了,碰到新问题新情境还是不会。

  误区3:做习题追求答案,重结果不重过程

  一些学生做题,得出答案就结束了,没有反思,没有归纳,没有总结,没有举一反三,过分追求结果,不重视解题的思维过程。其实,把思维过程整理和展示出来是学习的好方法。要学会用慢镜头展示思维的关键处,学会用放大镜放大思维的细节。平时在这些地方花时间“感悟”一下,使这种思维方法形成习惯,复习效果妙不可言。

  误区4:题目做得多收获多,重数量轻质量

  不少学生潜意识中认为习题多做多得,其实不然。反思一下,历届高三学子一年里要做多少题?有多少题目是白做的?这里要学会舍弃,偏题、难题、怪题对大多数学生来说要果断抛弃,要重视做题的质量而非数量。

  高考数学题海战术见解:培养数学能力

  一、数学运算

  运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习。在面对复杂运算的时候,常常要注意以下两点:①情绪稳定,算理明确,过程合理,速度均匀,结果准确;②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。

  二、数学基础知识

  理解和记忆数学基础知识是学好数学的前提。理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。

  记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。

  三、数学解题

  学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。保证数量就是①选准一本与教材同步的辅导书或练习册。②做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。④每天保证1小时左右的练习时间。

  保证质量就是①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。②落实:不仅要落实思维过程,而且要落实解答过程。③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。

  四、数学思维

  数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。

  只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,就一定能把数学学好。



猜你感兴趣:

1.2015高考数学复习必须注意陷入题海战术的4个误区

2.高考数学怎么考140

3.高考数学解题攻略

4.学霸是怎样学习的

5.快速提高高考数学成绩的方法

4795