高考数学常用的诱导公式
有以下几组:
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
高中数学重要知识点
1、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x,y+y)。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=—b,b=—a,a+b=0。0的反向量为0
AB—AC=CB。即“共同起点,指向被减”
a=(x,y)b=(x,y)则a—b=(x—x,y—y)。
3、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律
结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa。
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb。
数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积
定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+—∣a∣∣b∣。
向量的数量积的坐标表示:a·b=x·x+y·y。
向量的数量积的运算率
a·b=b·a(交换率);
(a+b)·c=a·c+b·c(分配率);
向量的数量积的性质
a·a=|a|的平方。
a⊥b〈=〉a·b=0。
|a·b|≤|a|·|b|。
高中数学解题方法与技巧
1、不等式、方程或函数的题型,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2、在研究含有参数的初等函数的时候应该抓住无论参数怎么变化一些性质都不变的特点。如函数过的定点、二次函数的对称轴等。
3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。
4、恒成立问题中,可以转化成最值问题或者二次函数的恒成立可以利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想(在分类讨论中应注意不重复不遗漏)。
5、选择与填空中出现不等式的题,应优先选特殊值法。
6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。
7、求参数的取值范围,应该建立关于参数的不等式或者是等式,用函数的值域或定义域或者是解不等式来完成,在对式子变形的过程中,应优先选择分离参数的方法。
8、在解三角形的题目中,已知三个条件一定能求出其他未知的条件,简称“知三求一“。
9、求双曲线或者椭圆的离心率时,建立关于a、b、c之间的关系等式即可。
10、解三角形时,首先确认所求边角所在的三角形及已知边角所在的三角形,从而选择合适的三角形及定理。
11、在数列的五个量中:中,只要知道三个量就可以求出另外两个量,简称“知三求二”。
12、圆锥曲线的题目应优先选择他们的定义完成,而直线与圆锥曲线相交的问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法(使用韦达定理首先要考虑二次函数方程是否有根即:二次函数的判别式)。
13、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简。
14、在求离心率时关键是从题目条件中找到关于a、b、c的两个方程或由题目得到的图形中找到a、b、c的关系式,从而求离心率或离心率的取值范围。
15、三角函数求最值、周期或者单调区间,应优先考虑化为一次同角弦函数,然后使用辅助角公式解答;与向量联系的题目,注意向量角的范围;解三角形的题目,重视内角和定理的使用。
16、立体几何的第一问如果是为建系服务的,一定用传统做法做(例如平行应想到平行四边形或三角形的中位线,垂直的应想到勾股定理的逆定理或者等腰三角形等);如果不是,那么可以在第一问就开始建立直角坐标系来解决。
17、利用导数解决存在性的问题需要构造函数,但选取函数的最值不同。注意“恒成立”与“存在”的区别,“在某区间上,存在使f(x)m成立”,即函数f(x)的最大值大于或等于m;“在某区间上,存在x使f(x)m成立”,即函数f(x)的最小值小于或等于m。
18、概率的题目如果出解答题,应该首先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径。
19、注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,全称与特称命题的否定写法,排列组合中的枚举法,取值范围或是不等式的解得端点能否取到需要单独验证,用点斜式或者斜截式方程的时候要考虑斜率是否存在等。
20、解决参数方程的一个基本思路是将其转化为普通方程,然后在直角坐标系下解决问题。
化学必考知识点总结
一、金属活动性Na>Mg>Al>Fe.
二、金属一般比较活泼,容易与O2反应而生成氧化物,可以与酸溶液反应而生成H2,特别活泼的如Na等可以与H2O发生反应置换出H2,特殊金属如Al可以与碱溶液反应而得到H2.
三、A12O3为_氧化物,Al(OH)3为_氢氧化物,都既可以与强酸反应生成盐和水,也可以与强碱反应生成盐和水.
四、Na2CO3和NaHCO3比较
碳酸钠碳酸氢钠
俗名纯碱或苏打小苏打
色态白色晶体细小白色晶体
水溶性易溶于水,溶液呈碱性使酚酞变红易溶于水(但比Na2CO3溶解度小)溶液呈碱性(酚酞变浅红)
热稳定性较稳定,受热难分解受热易分解
2NaHCO3Na2CO3+CO2↑+H2O
与酸反应CO32—+H+HCO3—
HCO3—+H+CO2↑+H2O
HCO3—+H+CO2↑+H2O
相同条件下放出CO2的速度NaHCO3比Na2CO3快
与碱反应Na2CO3+Ca(OH)2CaCO3↓+2NaOH
反应实质:CO32—与金属阳离子的复分解反应NaHCO3+NaOHNa2CO3+H2O
反应实质:HCO3—+OH-H2O+CO32—
与H2O和CO2的反应Na2CO3+CO2+H2O2NaHCO3
CO32—+H2O+CO2HCO3—
不反应
与盐反应CaCl2+Na2CO3CaCO3↓+2NaCl
Ca2++CO32—CaCO3↓
不反应
主要用途玻璃、造纸、制皂、洗涤发酵、医药、灭火器
转化关系
五、合金:两种或两种以上的金属(或金属与非金属)熔合在一起而形成的具有金属特性的物质.
合金的特点:硬度一般比成分金属大而熔点比成分金属低,用途比纯金属要广泛.
高中化学常考知识点
一、二氧化硅(SiO2)
天然存在的二氧化硅称为硅石,包括结晶形和无定形。石英是常见的结晶形二氧化硅,其中无色透明的就是水晶,具有彩色环带状或层状的是玛瑙。二氧化硅晶体为立体网状结构,基本单元是[SiO4],因此有良好的物理和化学性质被广泛应用。(玛瑙饰物,石英坩埚,光导纤维)
物理:熔点高、硬度大、不溶于水、洁净的SiO2无色透光性好
化学:化学稳定性好、除HF外一般不与其他酸反应,可以与强碱(NaOH)反应,是酸性氧化物,在一定的条件下能与碱性氧化物反应
SiO2+4HF==SiF4↑+2H2O
SiO2+CaO===(高温)CaSiO3
SiO2+2NaOH==Na2SiO3+H2O
不能用玻璃瓶装HF,装碱性溶液的试剂瓶应用木塞或胶塞。
二、硅酸(H2SiO3)
酸性很弱(弱于碳酸)溶解度很小,由于SiO2不溶于水,硅酸应用可溶性硅酸盐和其他酸性比硅酸强的酸反应制得。
Na2SiO3+2HCl==H2SiO3↓+2NaCl
硅胶多孔疏松,可作干燥剂,催化剂的载体。
四、硅酸盐
硅酸盐是由硅、氧、金属元素组成的化合物的总称,分布广,结构复杂化学性质稳定。一般不溶于水。(Na2SiO3、K2SiO3除外)最典型的代表是硅酸钠Na2SiO3:可溶,其水溶液称作水玻璃和泡花碱,可作肥皂填料、木材防火剂和黏胶剂。常用硅酸盐产品:玻璃、陶瓷、水泥
三、硅单质
与碳相似,有晶体和无定形两种。晶体硅结构类似于金刚石,有金属光泽的灰黑色固体,熔点高(1410℃),硬度大,较脆,常温下化学性质不活泼。是良好的半导体,应用:半导体晶体管及芯片、光电池、
四、氯元素:位于第三周期第ⅦA族,原子结构:容易得到一个电子形成氯离子Cl-,为典型的非金属元素,在自然界中以化合态存在。
高中化学基础知识点总结
1、金刚石(C)是自然界中最硬的物质,可用于制钻石、刻划玻璃、钻探机的钻头等。
2、石墨(C)是最软的矿物之一,有优良的导电性,润滑性。可用于制铅笔芯、干电池的电极、电车的滑块等
金刚石和石墨的物理性质有很大差异的原因是:碳原子的排列不同。
CO和CO2的化学性质有很大差异的原因是:分子的构成不同。
3、无定形碳:由石墨的微小晶体和少量杂质构成。主要有:焦炭,木炭,活性炭,炭黑等。
活性炭、木炭具有强烈的吸附性,焦炭用于冶铁,炭黑加到橡胶里能够增加轮胎的耐磨性。
4.金刚石和石墨是由碳元素组成的两种不同的单质,它们物理性质不同、化学性质相同。它们的物理性质差别大的原因碳原子的布列不同
5.碳的化学性质跟氢气的性质相似(常温下碳的性质不活泼)
①可燃性:木炭在氧气中燃烧C+O2CO2现象:发出白光,放出热量;碳燃烧不充分(或氧气不充足)2C+O22CO
②还原性:木炭高温下还原氧化铜C+2CuO2Cu+CO2↑现象:黑色物质受热后变为亮红色固体,同时放出可以使石灰水变浑浊的气体
6.化学性质:
1)一般情况下不能燃烧,也不支持燃烧,不能供给呼吸
2)与水反应生成碳酸:CO2+H2O==H2CO3生成的碳酸能使紫色的石蕊试液变红,
H2CO3==H2O+CO2↑碳酸不稳定,易分解
3)能使澄清的石灰水变浑浊:CO2+Ca(OH)2==CaCO3↓+H2O本反应用于检验二氧化碳。
4)与灼热的碳反应:C+CO2高温2CO
(吸热反应,既是化合反应又是氧化还原反应,CO2是氧化剂,C是还原剂)
5)、用途:灭火(灭火器原理:Na2CO3+2HCl==2NaCl+H2O+CO2↑)
既利用其物理性质,又利用其化学性质
干冰用于人工降雨、制冷剂
温室肥料
6)、二氧化碳多环境的影响:过多排放引起温室效应。
7..二氧化碳的实验室制法
1)原理:用石灰石和稀盐酸反应:CaCO32HCl==CaCl2H2OCO2↑
2)选用和制氢气相同的发生装置
3)气体收集方法:向上排空气法
4)验证方法:将制得的气体通入澄清的石灰水,如能浑浊,则是二氧化碳。
8.物理性质:无色,无味的气体,密度比空气大,能溶于水,高压低温下可得固体——干冰