2017赤峰市中考数学模拟试卷
2017赤峰市中考数学模拟试题
一、选择题(本题共10个小题,每小题3分,共30分)
1.化简 的结果是( )
A.5 B.﹣5 C.±5 D.25
2.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为( )
A. B. C. D.
3.下列计算正确的是( )
A.(2x2)3=2x5 B. ÷ =2 C.3a2+2a=5a3 D.2m•5n=10mn
4.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的大小为( )
A.20° B.30° C.36° D.40°
5.已知正比例函数y=(3m+2)x的图象过点(2,10),则m的取值为( )
A.1 B.﹣1 C. D.﹣
6.如图,P为等腰△ABC内一点,过点P分别作三条边BC、CA、AB的垂线,垂足分别为D、E、F,已知AB=AC=10,BC=12,且PD:PE:PF=1:3:3,则AP的长为( )
A. B. C.7 D.8
7.点P是直线y=﹣x+4上一动点,O为原点,则线段OP的最小值为( )
A.2 B. C.2 D.4
8.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示( )
A.CnH2n+2 B.CnH2n C.CnH2n﹣2 D.CnHn+3
9.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是( )
A.15° B.30° C.60° D.75°
10.二次函数y=x2﹣4x﹣5的图象关于直线x=﹣1对称的图象的表达式是( )
A.y=x2﹣16x+55 B.y=x2+8x+7 C.y=﹣x2+8x+7 D.y=x2﹣8x+7
二、填空题(本大题共4小题,每小题3分,共12分)
11.不等式3x﹣5<7的非负整数解有 .
12.请从以下两小题中任选一个作答,若多选,则按第一题计分.
A.正多边形的一个内角是150°,则这个正多边形的边数为 .
B.用科学计算器计算: tan55°36′= .(结果精确到0.1)
13.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y= 的图象恰好经过斜边A′B的中点C,若SABO=4,tan∠BAO=2,则k= .
14.如图,正方形ABCD的对角线AC、BD相交于点O,点E、F分别在边AB、BC上,且∠EOF=90°,则S四边形OEBF:S正方形ABCD= .
三、解答题(本大题共11小题,共78分)
15.计算:|3﹣π|+(﹣ )0﹣ +(0.1)﹣2.
16.解分式方程: =1﹣ .
17.如图,已知在△ABC中,∠A=90°,请用圆规和直尺作⊙P,使圆心P在AC上,且与AB、BC两边都相切.(要求保留作图痕迹,不必写出作法和证明)
18.我国二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,随机对本校部分同学进行了问卷调查,同学们对父母生育二孩所持的态度,分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:
(1)在这次问卷调查中一共随机调查了多少名学生?
(2)请补全条形统计图和扇形统计图;
(3)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.
19.(7分)在△ABC中,AB=AC,过点C作CN∥AB且CN=AC,连接AN交BC于点M.求证:BM=CM.
20.(7分)芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,在同类型重载桥梁中,它的主跨度居世界第二.如图,是该桥面上的一根立柱和拉索的示意图,小明测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索底端距离BD为20米,且已知两拉索顶端的距离AC为2米,请求出立柱AH的长.(结果精确到0.1米, ≈1.732)
21.(7分)某宾馆有50个房间供游客居住,当每个房间每天定价为120元时,房间会全部注满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,那么宾馆需对所居住的每个房间每天支出20元的相关消耗,打扫费用,设每个房间定价增加10x元(x为正整数).
(1)请直接写出每天游客居住的房间数量y与x的函数关系式.
(2)设宾馆每天的利润为W元,当每个房间每天的定价为多少元时,宾馆每天所获利润最大,最大利润是多少?
22.(7分)在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.
23.(8分)如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.
(1)求证:CE是⊙O的切线;
(2)若AC=4,BC=2,求BD和CE的长.
24.(10分)如图,已知抛物线y=ax2﹣4a(a>0)与x轴相交于A,B两点,点P是抛物线上一点,且PB=AB,∠PBA=120°.
(1)求该抛物线的表达式;
(2)设点M(m,n)为抛物线上的一个动点,当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.
25.(12分)(1)如图1,在四边形ADBC中,∠ACB=∠ADB=90°,将△BCD绕点D逆时针旋转90°,则点B恰好落在点A处,得到旋转后的△AED,则AC、BC、CD满足的数量关系式是 .
(2)如图2,AB是⊙O的直径,点C、D在⊙O上,且 = ,若AB=13,BC=12,求CD的长.
(3)如图3,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m
>>>下一页更多“2017赤峰市中考数学模拟试题答案”