2017鄂州中考数学模拟试卷
2017鄂州中考数学模拟试题
一 、填空题:
1.冬季的一天室内温度是8℃,室外温度是-2℃,则室内外温度的差是 ℃
2.如图,AB//CD,∠DCE=118°,∠AEC的角平分线EF与GF相交线于点F,∠BGF=132°,则∠F的度数是 .
3.分解因式2x2﹣4x+2的最终结果是 .
4.正多边形的一个外角等于20°,则这个正多边形的边数是______.
5.已知x1和x2分别为方程x2+x﹣2=0的两个实数根,那么x1+x2= ;x1•x2= .
6.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为 .
二 、选择题:
7.国家统计局统计资料显示:一季度,全国规模以上工业企业(全部国有企业和年产品销售收入500万元以上的非国有企业)完成增加值17822亿元,这个增加值用科学记数法(保留三位有效数字)表示为( )
A.1.782×1012元 B.1.78×1011元 C.1.78×1012元 D.1.79×1012元
8.如果 ,那么( )
A. B. C. D.
9.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )
10.下列各等式成立的是( )
A.4 ×2 =8 B.5 ×4 =20
C.4 ×3 =7 D.5 ×4 =20
11.下面关于反比例函数 的说法中,不正确的是( )
A.其中一个函数的图象可由另一个 函数的图象沿x轴或y轴翻折“复印”得到[
B.它们的图象都是轴对称图形
C.它们的图象都是中心对称图形
D.当x>0时,两个函数的 函数值都随自变量的增大而增大
12.为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整 的统计图表,根据图表信息,以下说法不正确的是( )
A.样本容量是200
B.D等所在扇形的圆心角为15°
C.样本中C等所占百分比是10%
D.估计全校学生成绩为A等大约有900人
13.下列图案中,可以看做是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
14.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC等于( )
A.1:4 B.1:3 C.2:3 D.1:2
三 、解答题:
15.解不等式组: ,并在数轴上表示不等式组的解集.
16.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.试说明AD+AB=BE.
17.某班去体育用品商店购买羽毛球和羽毛球拍,每只羽毛球2元,每副羽毛球拍25元.甲商店说:“羽毛球拍和羽毛球都打9折优惠”,乙商店说:“买一副羽毛球拍赠2只羽毛球”.
(1)该班如果买2副羽毛球拍和20只羽毛球,问在甲、乙两家商店各需花多少钱?
(2)该班如果准备花90元钱全部用于买2副羽毛球拍和若干只羽毛球,请问到哪家商店购买更合算?
(3)该班如果必须买2副羽毛球拍,问当买多少只羽毛球时到两家商店购买同样合算?
18.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且AC=2DE,连接AE交OD于点F,连接CE、OE.
(1)求证:OE=CD;
(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.
19.知识改变命运,科技繁荣祖国”.我国中小学每年都要举办一届科技比赛.下图为我市某校2010年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图:
(1)该校参加机器人、建模比赛的人数分别是 人和 人
(2)该校参加科技比赛的总人数是 人,电子百拼所在扇形的圆心角的度数是 _____°,并把条形统计图补充完整;
(3)从全市中小学参加科技比赛选手中随机抽取80人,其中有32人获奖. 今年我市
中小学参加科技比赛人数共有2485人,请你估算今年参加科技比赛的获奖人数约是多少人?
20.在⊙O中,AB为直径,C为⊙O上一点.
(Ⅰ)如图1,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;
(Ⅱ)如图2,D为 上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.
21.小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A、B两个出入口放入,②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则每玩一次应付费3元.
(1)请用表格或树状图求小美玩一次“守株待兔”游戏能得到小兔玩具的概率;
(2)假设有1000人次玩此游戏,估计游戏设计者可赚多少元?
22.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,当种植樱桃的面积x不超过15亩时,每亩可获得利润y=1900元;超过15亩时,每亩获得利润y(元)与种植面积x(亩)之间的函数关系如表(为所学过的一次函数,反比例函数或二次函数中的一种).
x(亩) 20 25 30 35
y(元) 1800 1700 1600 1500
(1)请求出每亩获得利润y与x的函数关系式,并写出自变量的取值范围;
(2)如果小王家计划承包荒山种植樱桃,受条件限制种植樱桃面积x不超过60亩,设小王家种植x亩樱桃所获得的总利润为W元,求小王家承包多少亩荒山获得的总利润最大,并求总利润W(元)的最大值.
23.如图,在平面直角坐标系中,二次函数y=-0.25x2+bx+c的图像与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(-4,0).
(1)求该二次函数的表达式及点C的坐标;
(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图像上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S。
①求S的最大值;
②在点F的运动过程中,当点E落在该二次函数图像上时,请直接写出此时S的值。
>>>下一页更多“2017鄂州中考数学模拟试题答案”