2017阜新数学中考模拟试卷及答案
2017阜新数学中考模拟试题
一 、选择题:
1.如图,数轴上的点A所表示的数为k,化简|k|+|1﹣k|的结果为( )
A.1 B.2k﹣1 C.2k+1 D.1﹣2k
2.由若干个相同的小正方体搭成的一个几何体如图所示,它的俯视图为( )
A. B. C. D.
3.若a<0,-1
A.a
4.老师要求同学们课后自作既是轴对称又是中心对称的图形,结果有以下几个,其中符合条件的有( )
A.1个 B.2个 C.3个 D.4个
5.如图,已知a∥b,三角形直角顶点在直线a上,已知∠1=25°18/27//,则∠2度数是( )
A.25°18/27// B.640 41/33// C.74°4133// D.64°41/43//
6.为了了解居民节约用水情况,小明同学对本单元的住户当月用水量进行了调查,情况如表:
住户(户) 2 4 5 1
月用水量(方/户) 2 4 6 10
则关于这12户居民月用水量,下列说法错误的是( )
A.平均数是5 B.众数是6 C.极差是8 D.中位数是6
7.下列运算正确的是( )
A.a-2a=a B.(-2a2)3=﹣8a6 C.a6+a3=a2 D.(a+b)2=a2+b2
8.小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家、下面哪一个图象能大致描述他回家过程中离学校的距离S(千米)与所用时间t(分)之间的关系( )
A. B.
C. D.
9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )
A.3 B.4 C.6 D.5
10.若5k+20<0,则关于x的一元二次方程x2+4x﹣k=0的根的情况是( )
A.没有实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.无法判断
11.如图,正方形ABCD和CEFG的边长分别为m、n,那么∆AEG的面积的值 ( )
A.与m、n的大小都有关 B.与m、n的大小都无关
C.只与m的大小有关 D.只与n的大小有关
12.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是( )
二 、填空题:
13.宁城地区2015年冬季受降雪影响,气温变化异常,12月份某天早晨,气温为﹣13℃,中午上升了10℃,晚上又下降了8℃,则晚上气温为 ℃.
14.函数 的自变量x的取值范围是 .
15.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
种子粒数 100 400 800 1000 2000 5000
发芽种子粒数 85 298 652 793 1604 4005
发芽频率 0.850 0.745 0.815 0.793 0.802 0.801
根据以上数据可以估计,该玉米种子发芽的概率约为 (精确到0.1).
16.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则AH:CH的值为 .
17.在Rt△ABC中,∠C=90°,AC=3,BC=4,将△ABC饶边AC所在的直线旋转一周得到圆锥,则该圆锥的表面积是 .
18.观察下列各式的规律:
(a﹣b)(a+b)=a2﹣b2
(a﹣b)(a2+ab+b2)=a3﹣b3
(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4
…
可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)= .
三 、解答题:
19.先化简,再求代数式 的值,其中 , .
20.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.
(1)求证:四边形ACEF是平行四边形;
(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.
21.某超市计划经销一些特产,经销前,围绕“A:绥中白梨,B:虹螺岘干豆腐,C:绥中六股河鸭蛋,D:兴城红崖子花生”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.
请根据所给信息解答以下问题:
(1)请补全扇形统计图和条形统计图;
(2)若全市有280万市民,估计全市最喜欢“虹螺岘干豆腐”的市民约有多少万人?
(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到“A”的概率为 .
22.如图,已知AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.
(1)求证:BD是⊙O的切线;
(2)求证:CE2=EH∙EA;
(3)若⊙O的半径为5,sinA=0.6,求BH的长.
23.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.
(1)该商场购进甲、乙两种商品各多少件?
(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?
24.周末,小明一家去东昌湖划船,当船划到湖中C点处时,湖边的路灯A位于点C的北偏西64°方向上,路灯B位于点C的北偏东44°方向上,已知每两个路灯之间的距离是50米,求此时小明一家离岸边的距离是多少米?(精确到1米)(参考数据:sin64°≈0.9,cos64°≈0.4,tan64°≈2.1,sin44°≈0.7,cos44°≈0.7,tan44°≈1.0)
25.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.
(1)填空:点A坐标为 ;抛物线的解析式为 .
(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?
(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?
>>>下一页更多“2017阜新数学中考模拟试题答案”