计划总结网 > 考试 > 学历类考试 > 中考频道 > 中考科目 > 中考数学 >

2017广东省中考数学模拟试卷

时间: 漫柔2 中考数学

  2017广东省中考数学模拟试题

  1.实数3的相反数是

  A.3 B. C. D.

  2.已知 ,则代数式 的值等于

  A. B. C. D.

  3.长城被列入世界文化遗传名录,其总长约为6700000m,若将6700000用科学记数法表示为 ( 是正整数),则 的值为

  A. 5 B .6 C. 7 D. 8

  4.将边长大于5(cm)的正方形的一边增加5(cm),另一边缩短5(cm),则得到的长方形的面积与原来正方形的面积相比

  A.保持不变 B.增加25(cm2)

  B. 减少25(cm2) D.不能确定大小关系

  5.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为

  A .1.5 B .2 C. 2.5 D. 3

  6.己知 是方程 的一个根,则代数式 的值为

  A. B. C. D .

  7.如图,小岛在港口 的北偏西60°方向,距港口56海里的 处,货船从港口 出发,沿北偏东45°方向匀速驶离港口 ,4小时后货船在小岛的正东方向,则货船的航行速度是

  A. 海里/时 B. 海里/时 C. 海里/时 D. 海里/时

  8.如图,在边长为1的小正方形组成的网格中, 的三个顶点均在格点上,若点 是 的中点,则 的值为

  A. B. C. D.

  9.如图,在平面直角坐标系中,线段 的端点坐标为 , ,直线 与线段 有交点,则 的值不可能是

  A B. C. D.

  10.已知二次函数y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四个命题,则一定正确命题的序号是

  ①x=1是二次方程ax2+bx+c=0的一个实数根;

  ②二次函数y=ax2+bx+c的开口向下;

  ③二次函数y=ax2+bx+c的对称轴在y轴的左侧;

  ④不等式4a+2b+c>0一定成立.

  A.①② B.①③ C.①④ D.③④

  二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)

  11.分解因式: .

  12.如图,在平行四边形 中,过点 的直线 .

  垂足为 ,若 ,则 的度数为 .

  13.某中学排球队12名队员的年龄情况如下表:

  年龄(岁) 12 13 14 15

  人数(人) 1 2 5 4

  则这个队员年龄的众数是 .

  14. 一个不透明的盒子中装有7个黑球和若干个白球,它们除了颜色不同外,其余均相同,从盒子中随机摸出一球并记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验2000次,其中有600次摸到白球,由此估计盒子中的白球大约有 个.

  15.已知扇形 的半径为4cm,圆心角的度数为 ,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为 ▲ cm

  16.如图,点 、 、 分别是⊙ 上的点, , , 是⊙ 的直径, 是 延长线上的一点,且 .则 的长 .

  17.如图,在平面直角坐标系中,过点 分别作 轴、 轴的垂线与反比例函数 的图象交于 , 两点,则四边形 的面积为 .

  18.如图,在边长为2的正方形 中, 为 的中点, 为边 上一动点,线段 的垂直平分线分别交边 、 于点 、 ,顺次连接 、 、 、 ,则四边形 的面积的最大值 .

  三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).

  19.(本题满分5分)计算:

  20.(本题满分5分)解不等式:

  21.(本题满分6分)先化简,再求值: ,其中 .

  22.(本题满分8分)己知 ,求方程 的解.

  23.(本题满分6分)如图,在 中, ,D为BC边上的一点,CD=2,且 与 的面积比为1:3.

  (1)求证: ∽ ;

  (2)当 时,求AD的长度.

  24.(本题满分8分)某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选

  课情况进行统计后,制成了两幅不完整的统计图(如图).

  (1)该班学生人数有 人;

  (2)将条形统计图补充完整;

  (3)若该校共有学生3500名,

  请估计有多少人选修足球?

  (4)该班班委5人中,1人选修

  篮球,3人选修足球,1人

  选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.

  25.(本题满分8分)如图,已知点 A(−2,m+4),点B(6,m)在反比例函数 ( )的图像上.

  (1) 求m,k的值;

  (2)过点M(a,0)( )作x轴的垂线交直线AB于点P,交反比例函数 ( )于点Q,若PQ=4QM,求实数a的值.

  26.(本题满分8分)某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.

  (1)该水果店两次分别购买了多少元的水果?

  (2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?

  27.(本题满分10分)如图,在 中, , ,以 为圆心,4为半径作⊙ .

  (1)试判断⊙ 与 的位置关系,并说明理由;

  (2)点 是⊙ 上一动点,点 在 上且 ,试说明 ;

  (3)点 是 边上任意一点,在(2)的情况下,试求出 的最小值.

  28.(本题满分10分)如图,抛物线 与 轴交于 、 两点,与 轴交于点 .

  (1)则点 坐标为 ; ;

  (2)己知 ,连接 并延长到点 ,使得 ,求点 的坐标;

  (3)在(2)的条件下,抛物线的对称轴上是否存在点 ,使得 ?若存在,求出点 的坐标,若不存在,请说明理由

  >>>下一页更多“2017广东省中考数学模拟试题答案”

32368